Real-Time Human Pose Inference using Kernel Principal Component Pre-image Approximations

نویسندگان

  • Therdsak Tangkuampien
  • David Suter
چکیده

We present a real-time markerless human motion capture technique based on un-calibrated synchronized cameras. Training sets of real motions captured from marker based systems are used to learn an optimal pose manifold of human motion via Kernel Principal Component Analysis (KPCA). Similarly, a synthetic silhouette manifold is also learnt, and markerless motion capture can then be viewed as the problem of mapping from the silhouette manifold to the pose manifold. After training, novel silhouettes of previously unseen actors are projected through the two manifolds using Locally Linear Embedding (LLE) reconstruction. The output pose is generated by approximating the pre-image (inverse mapping) of the LLE reconstructed vector from the pose manifold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Subspace Mapping: Robust Human Pose and Viewpoint Inference from High Dimensional Training Sets

A novel markerless motion capture technique called Kernel Subspace Mapping (KSM) is introduced in this thesis. The technique is based on the non-linear unsupervised learning algorithm, Kernel Principal Component Analysis (KPCA). Training sets of human motions captured from marker based systems are used to train de-noising subspaces for human pose estimation. KSM learns two feature subspace repr...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

3D Object Pose Inference via Kernel Principal Component Analysis with Image Euclidian Distance (IMED)

Kernel Principal Component Analysis (KPCA) is a powerful non-linear unsupervised learning technique for high dimensional pattern analysis. KPCA on images, however, usually considers each image pixel as an independent dimension and does not take into account the spatial relationship of nearby pixels. In this paper, we show how the Image Euclidian Distance (IMED), which takes into account local p...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Kernel Machine Based Learning for Multi-View Face Detection and Pose Estimation

Face images are subject to changes in view and illumination. Such changes cause data distribution to be highly nonlinear and complex in the image space. It is desirable to learn a nonlinear mapping from the image space to a low dimensional space such that the distribution becomes simpler, tighter and therefore more predictable for better modeling of faces. In this paper, we present a kernel mac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006